Neural signature of taste familiarity in the gustatory cortex of the freely behaving rat.

Abstract

Ample data indicate that the gustatory cortex (GC) subserves the processing, encoding, and storage of taste information. To further elucidate the neural processes involved, we recorded multi-unit activity in the GC of the freely behaving rat as it became familiar with a novel tastant. Exposure to the tastant was performed over three 40- to 50-min sessions, 24 h apart. In each session, the tastant was presented repeatedly, 1 s at a time, with 10- to 12-s inter-trial intervals. The neural response to the tastant typically lasted 7 s. Our results show that the average neuronal response to the tastant increased as this tastant became familiar, but this increase was detected only during the last 5 s of the response. The increased response was not generalized to another tastant. Furthermore, our analysis suggests that specific neuronal populations subserve the processing of familiarity of specific tastants. The signature of familiarity was not detected in the course of the familiarization session, but only on the subsequent day, suggesting that its development involves slow post-acquisition processes. Our data are in line with the notion that GC neurons process multiple taste attributes, familiarity included, during different temporal phases of their response. The data also suggest that by default the brain considers a taste stimulus as novel, unless proven otherwise.

Topics

0 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)