The hazard of near-Earth asteroid impacts on earth


Near-Earth asteroids (NEAs) have struck the Earth throughout its existence. During epochs when life was gaining a foothold f 4 Ga, the impact rate was thousands of times what it is today. Even during the Phanerozoic, the numbers of NEAs guarantee that there were other impacts, possibly larger than the Chicxulub event, which was responsible for the Cretaceous–Tertiary extinctions. Astronomers have found over 2500 NEAs of all sizes, including well over half of the estimated 1100 NEAs >1 km diameter. NEAs are mostly collisional fragments from the inner half of the asteroid belt and range in composition from porous, carbonaceous-chondrite-like to metallic. Nearly one-fifth of them have satellites or are double bodies. When the international telescopic Spaceguard Survey, which has a goal of discovering 90% of NEAs >1 km diameter, is completed, perhaps as early as 2008, nearly half of the remaining impact hazard will be from land or ocean impacts by bodies 70–600 m diameter. (Comets are expected to contribute only about 1% of the total risk.) The consequences of impacts for civilization are potentially enormous, but impacts are so rare that worldwide mortality from impacts will have dropped to only about 150 per year (averaged over very long durations) after the Spaceguard goal has, presumably, ruled out near-term impacts by 90% of the most dangerous ones; that is, in the mid-range between very serious causes of death (disease, auto accidents) and minor but frightening ones (like shark attacks). Differences in perception concerning this rather newly recognized hazard dominate evaluation of its significance. The most likely type of impact events we face are hyped or misinterpreted predicted impacts or near-misses involving small NEAs. D 2004 Elsevier B.V. All rights reserved.


2 Figures and Tables

Download Full PDF Version (Non-Commercial Use)